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1 Introduction

In recent years, a great development in the AdS5/CFT) correspondence [1] was put forward
thanks to the discovery of integrable structures in both sides of this gauge/string duality
(cf. for instance the seminal papers [2—4]).

Very recently, a new conjecture has been proposed regarding a correspondence between
a large N M-theory on AdSy x S7/Zj, and a three-dimensional SU(N) x SU(N) Chern-
Simons matter theory whith N = 6 superconformal symmetry [5].

Moreover, Minahan and Zarembo [6] have shown that this theory is integrable (see
also [7]) at the second order in A, that is a 't Hooft coupling defined as A = N/k, which
is made continuous when N,k — oo and A is kept fixed. On the string theory side, the
integrability at the classical level has been shown in [8, 9].

Furthermore, giant magnon [18] solutions were found in the ITA string theory in AdSy x
CP?, dual to the SU(2) x SU(2) sector of the gauge theory [19-22], and their finite-size
effects were studied in [23-28].

On the other hand, an all-loop generalisation of the two-loop Bethe Ansatz proposed
in [6] was conjectured by [10] and may be derived starting from a S-matrix proposed in [11].}
Actually, the string theory computations [13-15] of the folded spinning string energy led
to a result that was different from the Bethe Ansatz prediction of [10]. It was suggested
in [16] that this disagreement was due to different regularisations used in the calculation of
the one-loop correction to the string energy by the algebraic curve method. A resolution to
this apparent contradiction between the worldsheet and the Bethe Ansatz calculations has

!See also [12] for the original derivation of the SYM Bethe Ansatz equations from the AdSs/CFTy
S-matrix



been recently proposed in [17], indicating that the Bethe Ansatz proposal may be correct
at strong coupling. Since the dispute concerns one-loop results, we expect agreement
in derivations at leading order at strong coupling, in which we are mainly interested in
this paper.

In fact, the aim of this paper is to compute leading finite-size corrections in the simplest
case of an elementary giant magnon (GM) through the generalised Liischer method (see [29,
30, 32-35] regarding mainly AdSs;/CFTy), based on scattering data (S-matrix).

These terms correct the infinite volume dispersion relation and should take into account
possible wrapping effects (cf., for instance, [30, 31] for the more studied phenomenon of
AdSs/CFTy wrapping).

After the careful analysis in [20, 21], one can easily understand that there is a classical
solution of GM kind in CP?3, which lives in R; x S2 x 5% and whose infinite volume dispersion
relation behaves at large A in this way

e(p) ~ 2V2\

sin <§>( . (1.1)

This solution was interpreted in [21, 23] as composed by two magnons, each one in a S2,
with equal worldsheet momenta p = p; = po and the following infinite volume disper-
sion relation?

es(p) = \/i +arz(nsin? (2), (1.2)
where
A+ O0(N\?) for A< 1
h(X\) = (1.3)
VA/24+0N) for A>> 1.

Consistently, at large A, (1.2) becomes one half of (1.1).

Therefore, in our calculations of the Liischer terms, we will have to use the formulae
for multiparticle states (see [36-39] for some applications in AdSs/CFTy).

On the other hand, [26] found, by algebraic curve methods, the first quantum correction
to the energy of a GM that lives on CP! ~ S?, with the same dispersion relation of (1.2).
In order to distinguish this solution, we will call it "small” GM.

We will show the calculations for the p- and F-term of the GM in section 2 and 3,
respectively. We find agreement with the string results for the p-term and propose a new
result for the first quantum finite-size correction, that is very similar, at the level of the
final integral expression, to the algebraic curve result for the ”big” GM, that lives in RIP?,
obtained in [26]. Clearly, this fact opens the way to the possible interpretation of the RP?
GM as given by a couple of SU(2) GMs. In section 4, we will present computations for the
- and F-term of the ”small” GM. In the latter case we will give a result which confirms the
algebraic curve calculations [26], for the classical leading contribution, instead, we propose
a new result that probably will require a deeper understanding. Finally, we also give some
results for the next-to-leading contributions to the p-terms in section 5. We conclude with

some conclusions in section 6.

2We ought to thank G. Grignani for clarifying this point to us.



2 The p-term for the R x S2? x S? giant magnon

In this section we want to compute the leading finite-size correction to €(p), de(p), as
the Liischer p-term for a nonrelativistic theory characterised by a dispersion relation of
kind (1.2). The generalisation of the Liischer p-term energy correction [29] for a single
particle to a generic nonrelativistic theory, has been first derived by [32], and reads

w_ (1 €(p) —ig* L _ \Fy gba g, x
56(1_ i1 e RBLS*Z( 1) Sba(q ’p)’ (21)

€(q*) ¢=q

where ¢* corresponds to the bound state pole of the S-matrix, p is the momentum of the
real particle, denoted by a.

Now, since the GM solution on Ry x S? x S? was interpreted in [21, 23] as a couple of
two magnons with equal momenta, then, in order to calculate the finite-size correction, we
have to reconsider generalised Liischer formulae for multiparticle states [38] :

M /
. €q (pl) —i a
bty = —i g E (—1)% (1 - e/l((j*)> @ L R_es Sgal (g, m) | | Sbak a,pk), (2.2)
=1 b b a

! k£l

where A = {a1(p1),...,an(pr)} denotes a string made of M GMs.

We have to apply this formula to the case of two real particles - one of type A and
the other of type B - interacting with another couple of virtual particles - of type A and B
- moving around the cylinder. The S-matrices we will use to describe these interactions -
between A-A, A-B and B-B particles - are those proposed in [11]:

 [——
S44(p1, pa) = SBB(p1,p2) = So(p1,p2)S(p1,p2) = o(p1, p2) = xlx S(p1,p2)
1_ 2
AB BA & A xy —ag 4
S22 (p1,p2) = S7%(p1,p2) = So(p1,p2)S(p1,p2) = o(p1,p2) e — S(p1,p2), (2.3)
1 2

where o(p1,p2) is the BES/BHL dressing factor [42-45], and S can expressed just as in
the appendix A.5 of [49], through a set of functions a1, ...,a;9 dependent on the variables
fo. We will choose the so-called string basis of the S-matrix, in order to obtain the
correct string result, as since [32, 33]. Moreover, we take into account that only SAA QBB
have physical poles, corresponding to BPS bound states, determined by the same condition
Ty = ﬂ:;' .

In few words, the real A-particle scatters with the virtual A-particle and forms with it
a bound state - corresponding to the physical pole of S44 - while the B-particle scatters
elastically with the virtual A-particle, because S4P does not have physical poles, as we will
see below. Then the real B-particle proceeds to form a bound state - corresponding to the

SBB _ with the virtual B-particle. Finally, we have to sum the contributions

physical pole of
given by this diagram over all the possible residues of the S-matrix, taking into account

that both real paricles belong to the SU(2) sector (i.e. a3 = ag = 1). Moreover, in this case



the real particles have equal momenta p; = py = p, then S44(¢*, p) and SBE(¢*, p) share
the same pole. Hence, the above description shall suggest us this S-matrix contribution:

SA4(q*,p) S (¢*,p) + SPA(a",p)SP (¢",p) (2.4)

on which we need to pick up the residues. Then we may propose the following expression
for the p-term of the SU(2)4x SU(2)p giant magnon

et = =i (=1 {<1_ . ) e it [<5A3>b1<q17 p) Res (SY)i(a" o)+
b

eb((j*)

- (SPA (g )q{?:e%(SBB)Z}(q*,p)} N (1 B 621(%)) L o (2.5)

[(SABnl(qQ, ) Res (S50 )+ (PR @30) Res (SPRH o' p>]} |

Now, the evaluation of the various terms in (2.5) follows closely the derivation in [32], then
we can omit the details of calculation. We have to take into account only the replacement
of g = v/ Agyn/4m with h(\) and the different structure of the S-matrix contribution:

S DI (SAN I @ p) (S (a7 p) + (SR (a7, p) (SPHE (" p) =
b
= 2SO(q*7p)‘§0(q*7p) {a%(xq*ﬂp) + [a1(zge, zp) + a2(xq*7xp)]2 - 2“(25(%*79”1))} :
(2.6)
that is of the form SpSp >, (—1)% (S81)? rather than SpSo(3 ", (—1)7.S81)? of the SYM case.
At the leading order in the strong coupling limit, in which only a; survives, this implies
an extra factor 2 with respect to the SYM case. The other factor 2 in (2.6) is due simply
to the equal contribution of the two terms in the lLh.s.
In conclusion, we obtain the result for the finite-size correction to the dispersion relation
of a GM in SU(2) x SU(2), in perfect agreement with that given in equations (2) and (54)
of [23]:
A/ L
det ~ _8v2A sin® (B) e V2sin/2) (2.7)
e2 2
Of course, it can be directly related to the analogue in SYM [32, 47, 48, 52]
16 D
Ocliypr = — 5 gsin’ (g) ¢ VI (2.8)

by substituting g with h(\) ~ \/A/2.

3 The F-term for the R x §% x S? giant magnon

Here we consider - as in the previous section - a GM with excitations on both S?; then we
have to take into account interactions between A and B particles inserting also S4% in the
final S-matrix. The generalised multi-particle formula for the Liischer F-term is [38]

M /
SEf = —Z(—l)FbP.V./ gg (1 - %) et <H Spn (4", 11) 1) :

b - k=1 =1
(3.1)



where 224:1 ar = 1, and P.V. indicates that we take the principal value of the integral.
We start from determining the kinematic part of the integral above. Firstly, the energy
of the virtual particle with momentum ¢* is parametrised by the variables xgi, that scale
at strong coupling as [10]
ix?

w=xt ShVGE 1) +O(1/)) . (3.2)

T

Since also in this case the calculations - once we replace g — h(\) - follow closely the
derivation of the F-term in SYM [33], we give immediately the result for the kinematic part:

@CQ(QU)Ei@(l— <(p) ): ! 2(—2x+(m2+1)M>, (3.3)

(22 — 1) ay xp +1

where Q(z) is usually defined in the algebraic curve approach as the function determining

the characteristic frequencies of the energy fluctuations. In particular, definition (3.3) is

satisfied by
1 Tt
Q(z) = (1 T Tl ;c) (3.4)

x2—1 _x;,rx;—l-l

which coincides with the expression [26] valid for both ”small” and "big” GM solutions.

The dressing part in (2.6) contributes with

NG (oK Ty =Ty - T Ty o, —DALD
So(a",p)S0(a",p) = = 7 olwgm) e A (3.5)
q* p :r_*m;

where A = L + 2v/2\sin (p/2), while at strong coupling the contribution of as can be
neglected at leading order, and then the "undressed” part in (2.6) results

)

Ty — 1

2 .
r—w, 1~ 4ie P2 sin(p/2)(x? — 1)
(0972 —a)

2 [a1 (g, 2p)° — ag(aqr, 1p)?] = 2 (

(3.6)

where the sign minus of the term ag(z,,2,)? is due to the term (—1)%, with F}, = 0 for
bosonic and Fj, = 1 for fermionic terms.

All together these terms give

2

SEF ~ 2P.V.y§ 4 o Q) e VIR <ﬂ> 1, (3.7)
U+ T rry —1

that, except for the parametrisation in terms of p/2 instead of p/4, coincides with the result

of [26] for the ”"big” GM; then the result obtained with the algeraic curve and with the

Liischer techniques seems to be formally in agreement at all orders in v/A /L (the situation

here is exactly the same as in the AdSs;/CFTy correspondence [33]). Using the saddle



point method, we can give an approximated evaluation of the above integral at leading

order in \/X/A:

SEF ~ 44X A2 e_\/A?_A 7sin (g) .
TA 1 — sin (g)

(3.8)

We immediately notice that our result (3.8), even after a replacement p/2 — p/4, is different
to the same quantity (5.12) in [26], although the integral expression for the F-term in the
line before is the same in that paper.? We think that the reason of this discrepancy is the
different integration curve in the complex plane adopted here. Here we have integrated
only on the upper half of the unite circle, because the bijective map given by
. 2 +1
q~1 @1 (3.9)

send the real axis to the upper half-circle, as explained in [33]. Therefore, we think that
there is a mistake in [26] about the evaluation of this integral. We will explain this point
in the appendix in a more detailed way.

Contrarily to the previous case, the dependence on p is very different if compared with
the F-term of two GMs in SYM [33], which reads

_ASYJVI 1n2 (2)
SEE o~ 16 |—I w2\ ) 3.10
e e (e o

where ASYM = [, + 8 gsin(p/2).

4 The p- and the F-term of the CP! giant magnon

Let us consider a single giant magnon which belongs to the SU(2) 4 sector, for instance. If
we take the formula (2.1) for the one-particle case and consider the S-matrix contribution*

1-— +1 = - +
T —x .
SA4(p1,p2) + S4B (p1,p2) = T SRSl 2 ) o (py,p2) S(p1.p2) (4.1)
o :v;:v;r Ty =T

then we have all the ingredients to compute the p-term of this "small” GM.

Indeed, we have only to repeat the calculations of the section 2, without considering
contributions by S4Z, but only by S44, since the latter only has a pole corresponding
to a boundstate of two A-particles, that is a necessary condition to have a non-vanishing
residue of the S-matrix, which determines the u-term:

1— L
AAy DL ziay —
Z(_l)Fb ]*%_615* (S )bl (Q*ap) == 7[112) (xq - CC;—) ay (xq,xp) g (xq,xp) : (42)
5 7*=q g 1— P

3Except the dependence in p, once we replace EpRef126)(Q = 1) by our A, the two results match at strong
coupling.

4 Actually the contribution of 4% into the self-energy processes of a single A-particle, in a system of
A-B particles, is considered also in QCD applications of the Liischer terms: see, for instance, [53].



We obtain the u-term for the ”small” GM at strong coupling

2i L
det ~ ! sin (g) e V2isin(p/2) | (4.3)
e

that surprisingly is an imaginary quantity! We have to make a remark on this strange fact.
At this point we could think that we should take the real part of this result, as stated
in [37, 38], because of the replacement cos(q*L) — e~ % made in the derivation of - and
F-term in [29, 32]. Alternatively, one could instead try to find a formulation - as in [35]
form algebraic curve method - that could guarantee the reality of the whole - not expanded
in (1/v/\) - expression (2.1). We hope, but at this moment we cannot demonstrate, that
this is the case, and we reserve this problem to future investigations.

Now, we want to compute the F-term leading contibution for this ”small” GM solution.

Thus, in this case we can take the whole S-matrix contribution (4.1), so that we obtain

bl 1- :1:+1:1:7 T — )
> (=1)fe [(S4 + 548)]) (¢7,p) = (2a1 + a2 —2a6) 0 (q”, p) e s
l—-—— oz, -2
b Ty q
(4.4)

Taking the expressions in the appendix A of [33] for the strong coupling limit of the elements
a1, az, ag and for (x4, x,), and using the expansion (3.2) for x4+ and z3 ~ etP/2 | the
the previous equation becomes

—q (As—L) = — X
SRS+ (5] (@) =4V (u”)’ (45)

5 Tp v —1

where Ay = L + v2Asin(p/2). In this way we obtain the following expression

. Ag T — T
SEF = 2P.V.jé d—”?axﬁ(m) e VAT (u - 1) : (4.6)

U+ T Tp v —1

that agrees with the expression for the one loop finite-size correction of the ”small” GM

in [26]. If we proceed now to evaluate this integral via the usual saddle-point method,

we find
A2 _As cos(p/2)
F ~ _— —_—
BEY o0 =2 [ XA T (1_Sin(p/2) 1) . (4.7)

Obviously, the result of [26] is different from ours in the same way as in the previous

section: there is a discrepancy in evaluating the final integral for the F-term (more details
in the appendix).

Comparing with the SYM result [33], we can see that our expression for the first quan-
tum correction to the finite- size effect is very different, because of the different dependence

» N g _ASYM ([ og (
Psvm = —S\Txsvw ¢ 7 Gne) =1

on the momentum:

(4.8)

OIS o3
— [ —
[
==
v



where ASYM = I, + 4 gsin(p/2). However, the prefactor and the exponential term, as one
can easily notice comparing the two expressions (4.7) and (4.8), can be mapped, except to
the specific form of the As, to our result substituting g with the first order term of h(\)
at strong coupling.

5 Next-to-leading contribution of the p-terms

While considering the next-to-leading term, predicted to be a constant ¢ = —In(2)/27
by [17], in the strong coupling expansion of the central function h(\)

h(A):MHH)(%) for A> 1, (5.1)

we may proceed to the expansion of the Zhukovsky variables x;)'fq up to the order 1/ N3/2;

: 1 1 c 1
== et2 (] - O(—)) 5.2
e ( * 2v/2X sin(p/2) * 16Asin?(p/2)  2Asin(p/2) + \3/2 (5-2)

; 3 17 — e — 48 csin®(p/2) 1
s =P 1+ +i A +0 (s 5.3
Yo = ° ( 2v2\sin(p/2) RSV sin3(p/2) \3/2 » (5:3)
and z, determined by the boundstate condition z, = CU;— . The exponential term is now

given by

i i S R L (. cos(p/2) c 1
q R L e q L — V2Xsin(p/2) - — -
o= ‘ ’ [1 2) (Z sin®(p/2)  sin(p/2) 0%z ) (54)

while the kinematical factor reads

1—M:sin2<]—?>—M+O< = ) (5.5)

(@) 2 VX N2
It remains to evaluate the S-matrix contribution, that is given in part by the following limit
. q*—g*> 1 ie "2 342e7P <1>
lim ( ———— | = — = — — +0| <), 5.6
g =" (xq_ —af ) xy 2sin®(5)  4v2Xsin(p/2) A (5:6)

that is due to taking the residue in the momentum of the boundstate, in part by the
“undressed” S-matrix elements

1 _ YR :
g (o o) a3+ (a1 +as)? —2a3] = 2278 i —desin’(p/2) (1
1- Lo o -y % Vsin (%) Asin(p/2) A\3/2

Tq Tp
(5.7)
and in part by the dressing factor

o) = — 2 it (7) - VI Pin(p/
DEPS g2 2 Te?
\/ﬁe_“”sim2 2)[4 csin?(p/2 sin(p/2) — 5icos(p/2
_ (/D lhesin®(of2) sino/2) =Sicosw/2] o 10y (5



Therefore, all these contributions together give in the end

™

- 22 (o (3) = 2o (3))| o w0 () 60

If we compare this result with the p-term for a giant magnon in N'=4 SYM [35]

Sebt — [_8\/ﬁsin3 <§> _ M +8isin (g) — 16 ¢sin® <§>

2 ™
47 L oL 1
_|__Z cos (B) e 2 T 4 0 <—> , (5.10)
g 2 g

we notice that, differently to the classical contribution (section 2), the substitution g —

16sin (5
O€ley 1y = [— 16 g sin® <B> — L(Q) + 8isin <g> — 8isin(p)

h(A) is no longer enough to match the two results. In fact the relevant difference is the
term proportional to sin(p), that is missing in (5.9) because of the different nature of the
S-matrix contribution. Furthermore it is an obvious fact that the terms in (5.9) which
are proportional to ¢ could be obtained by substituting g/v/2 with h()) the corresponding
result of N =4 SYM

16 . 3 (P\ st

Set = —— h()) sin (§> ¢ T (5.11)
e

and then expanding h(X) as in (5.1).
For the CP! giant magnon we follow the same steps of calculation again, hence we
omit the details and give directly the result for the u-term up to L/ order:

o€t = eimSiLn(p/?) |:2281n(p/2) + 1 <ﬁ — e — 1) +
e V2X\esin(p/2) \ T

So, if we take the real part, for the considerations made in the previous section, we have

(S|

at this order the following not vanishing terms

B —m B cos(p/2) +1 Lcos(p/2) l
Re[de!] = e V2rsin(p/2) [ V3 esinp/2) + AesinZ(p/2)] +0 (}\) . (5.13)

Of course, as far as the term proportional to ¢ is concerned, it could be simply obtained

from the expansion of the leading term, if we suppose that its dependence on the coupling
constant is given by the strong coupling expansion of h(\):

2isin(p/2) o T — 2isin(p/2) e—m 1+ 'cL L0 L .
e e Asin(p/2) A\3/2
(5.14)
At this point, it would be of interest a comparison of the next-to-leading results (5.9)

and (5.12) with possible algebraic curve results, derived along the lines of [35], in order to



give a check and a constraint on the value of ¢. Yet, by now we do have only heuristic pre-
liminary results which are though promising. Therefore, the calculation of these quantum
corrections by this completely different technique is currently under investigation and may
be the subject of a future publication.

6 Conclusions

In this paper we compute the classical and the first quantum finite-size corrections to the
energy of giant magnons in the SU(2) x SU(2) sector of N = 6 superconformal Chern-
Simons theory. Therefore we provide a check of the string result [23], of the algebraic curve
result [26] and then a test for the all-loop Bethe Ansatz [10], for the S-matrix [11] and,
more generally, for the AdS,/CFTj5 correspondence [5].

We have proposed some generalised Liischer formulae heuristically derived from [32, 33,
38, 39]. We applied them in the one-particle case in order to calculate finite size correction
to the energy of the so-called ”small” giant magnon. It turns out a perfect agreement
with algebraic curve calculations [26] for the F-term, while we propose a prediction for
the p-term that needs some deeper understanding, as we explain in the main text. For
the giant magnon that lives on R x §2 x S%, we applied the formulae for the case of
multi-particle states considering the strong coupling limit, where the interactions between
elementary magnons is dominant and one can neglect the contributions coming from all
the bound states of the theory. In particular, our p-term is in perfect agreement with the
string result by [23] and the F-term matches the algebraic curve result by [26] for the ”big”
giant magnon.

Indeed it would be extremely interesting to investigate for example the bound states
S-matrix and the mirror [52] counterpart of the sector we considered, in order to study
wrapping effects also at weak coupling (see [39] for N’ =4 SYM) and finite-size effects for
dyonic giant magnons in CP? (see [27, 50] for string computations and [51] for string and
Liischer-terms results in N' =4 SYM).

On the other hand, further investigations about sub-leading finite-size corrections at
strong coupling could be - as mentioned above - an interesting future research direction
as well.
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A Reconsidering the algebraic curve F-term for the ”big” and ”small”
GM

The equation (5.5) in [26] reads

dx D — Di — Pi
— E - Fyj J
661—loop = ’7@]( 1) % 1 271‘ cot ( 5 > Q(x) (A.1)

ij

Let us consider this expression when L, namely A, is large; then, since the quasimomenta
have the following expression in terms of A:

(A.2)

also the quasimomenta are large in this limit. Therefore we take the expansion of the
cotangent when the p; are large and we ought to distinguish the two casesz € U*:

cot (pz 2 pj) = i (1 4+2e70P) ) (A-3)

where all the equilevel simbols are considered in the same expression. Only the exponential
part of (A.3) contributes in the integral (A.1), then, after an integration by parts it becomes

8€1—100p = — 7{;+ Ma Q(z Z%J Fij o= i(pi—pj) _ ygj_ Ma Oz Z%J Fij gi(pi=p;)

(A.4)
Now, one can easily verify, once made explicit the quasimomenta in terms of = and z*, that
the two integrals above give the same contribution, in such way that one can perform the
saddle-point evaluation on the same integral we obtain from the Liischer term calculations
in the main text:

56171001; = — finL 50 Z’Yzj Fij e_Z(Pz Pj) (A5)
where
2
_i/2(A=L) T — X,
Z%J Fije=ibi=p) = 4" V2 R (71)) -1 (A.6)
zrp —1

in the case of the "big” GM, and

_iy/3As—L) —x
Z%] Fyjo=ilpi=ps) — 4o~ V2 ox (””7%1_1> (A.7)

TTy —

in the case of the "small” GM. These expressions match exactly our S-matrix contributions

n (3.7) and (4.7).
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